Computer-Aided Estimation for the Risk of Development of Gastric Cancer by Image Processing
نویسندگان
چکیده
The aim of this study was to establish a computer-aided estimating system for determining the risk of development of gastric cancer, achieved by image processing on an ordinary endoscopic picture. Digital endoscopic pictures of the background gastric mucosa in 26 Helicobacter pylori (H. pylori) positive patients with early intestinal type gastric cancer and age-gendermatched H. pylori positive subjects without cancer were used. The pictures were processed for 15 pictorial parameters. Out of the 15 pictorial parameters, 3 parameters were found to characterize the background gastric mucosa with gastric cancer against that without. Based on the Bayes decision theory, the computer-aided estimating system has been established. Sensitivity, specificity, positive predictive value and negative predictive value of the Bayes classifier were found to be 0.64, 0.64, 0.65 and 0.63, respectively. This method may permit an effective selection of the high risk population of gastric cancer needing follow-up endoscopy.
منابع مشابه
Improvement of Breast Cancer Detection Using Non-subsampled Contourlet Transform and Super-Resolution Technique in Mammographic Images
Introduction Breast cancer is one of the most life-threatening conditions among women. Early detection of this disease is the only way to reduce the associated mortality rate. Mammography is a standard method for the early detection of breast cancer. Today, considering the importance of breast cancer detection, computer-aided detection techniques have been employed to increase the quality of ma...
متن کاملDIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION
Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...
متن کاملA New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients
Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...
متن کاملInfluence of the Different Primary Cancers and Different Types of Bone Metastasis on the Lesion-based Artificial Neural Network Value Calculated by a Computer-aided Diagnostic System,BONENAVI, on Bone Scintigraphy Images
Objective(s): BONENAVI, a computer-aided diagnostic system, is used in bone scintigraphy. This system provides the artificial neural network (ANN) and bone scan index (BSI) values. ANN is associated with the possibility of bone metastasis, while BSI is related to the amount of bone metastasis. The degree of uptake on bone scintigraphy can be affected by the type of bone metastasis. Therefore, t...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کامل